
COT 6405 Introduction to Theory of
Algorithms

Topic 15. Minimum Spanning Tree

11/10/2015 1

Minimum Spanning Tree

• Problem:

– given a connected, undirected, weighted graph
G = (V, E)

– find a spanning tree using edges that connects all
nodes with a minimal total weight w(T)= SUM(w[u,v])

• w[u,v] is the weight of edge (u,v)

• Objectives: we will learn

– Generic MST

– Kruskal’s algorithm

– Prim’s algorithm
2

Motivation Example

• Problem definition
– A town has a set of houses and a set of roads

– Each road connects 2 and only 2 houses

– A road connecting houses u and v has a repair cost w(u, v)

• Goal: Repair enough (and no more) roads such that

– everyone stays connected: can reach every house from all
other houses, and

– The total repair cost is minimum

3

Model as a graph
• The problem can be modeled as a graph

– Undirected weighted graph G = (V, E).

– Weight w(u, v) on each edge (u, v) ∈ E.

• Find T ⊆ E , such that

– T connects all vertices (T is a spanning tree)

–

• A spanning tree whose weight is minimum
over all spanning trees is called a minimum
spanning tree, MST. 4

Growing a minimum spanning tree

• Building up the solution

– We will build a set A of edges

– Initially, A has no edges.

– As we add edges to A, maintain a loop invariant

• Loop invariant: A is a subset of some MST

– Add only edges that maintain the invariant

– Definition: If A is a subset of some MST, an edge
(u, v) is safe for A, if and only if A ∪ {(u, v)} is also a
subset of some MST

– So we will add only safe edges
5

Generic MST algorithm

6

Correctness

• Use the loop invariant to show that this
generic algorithm works.

– Initialization: The empty set trivially satisfies the
loop invariant.

– Maintenance: Since we add only safe edges, A
remains a subset of some MST.

– Termination: All edges added to A are in an MST,
so A is a spanning tree that is also an MST, when
we stop

7

Definitions
• Let S ⊂ V (vertex set); A ⊆ E (edge set).

• A cut (S, V −S) is a partition of vertices into two
disjoint sets: S and V-S

• Edge (u, v) ∈ E crosses the cut (S, V−S) if one
endpoint is in S and the other is in V−S.

• A cut respects edge set A, if and only if no edge in
A crosses the cut.

• An edge is a light edge crossing a cut, if and only
if its weight is minimum over all edges crossing
the cut.
– For a given cut, there can be > 1 light edge crossing it.

9

Theorem
• Let edge set A be a subset of some MST

• (S, V −S) be a cut that respects edge set A

– No edges in A crosses the cut

• (u, v) be a light edge crossing cut (S, V −S).

• Then, (u, v) is safe for A.

• Proof

– Let tree T be an MST that includes edge set A

– If T contains edge (u, v), done.

– So, now assume that T does not contain edge (u, v)

– We’ll construct a different MST T’ that includes A ∪
{(u, v)}. 10

Proof
• Recall: a tree has a unique path between each pair of

vertices (why?).

– Since T is an MST, it contains a unique path p between u and v.

– Path p must cross the cut (S, V−S) once

– Let (x, y) be an edge of p that crosses the cut

• As (u,v) is a light edge, we have w(u,v) ≤ w(x,y)

• Since the cut respects A, edge (x, y) is not in A
• We can build tree T ’ from T

– Remove (x, y): Breaks T into two components.
– Reconnects them with edge (u,v)  T’

11

Proof • Except for the dashed edge (u,
v) , all edges shown are in T

• Shaded edges are the path p

12

Proof
• So T’ = T − {(x, y)} ∪ {(u, v)}.

•  T’ is another spanning tree

• w(T’) = w(T) − w(x, y) + w(u, v) ≤ w(T)
– since w(u, v) ≤ w(x, y)

– Since (1) T’ is a spanning tree, (2) w(T’) ≤ w(T), and (3) T is

an MST T’ must be an MST

• Need to show that A ∪ {(u, v)} ⊂ T’

– A ⊆ T and (x, y)  A ⇒ A ⊆ T − {(x, y)}

– A ∪ {(u, v)} ⊆ T − {(x, y)} ∪ {(u, v)} = T’

– Since T ’ is an MST, edge (u, v) is safe for A.

13

MST: optimal substructure

• MSTs satisfy the optimal substructure property: an
optimal tree is composed of optimal subtrees

– Let T be an MST of G with an edge (u,v) in the middle

– Removing (u,v) partitions T into two trees T1 and T2

– Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST of G2 =
(V2,E2)

• Proof: w(T) = w(u, v) + w(T1) + w(T2)
(There can’t be a better tree than T1 or T2, or T would
be suboptimal)

14

Corollary

• If C = (VC, EC) is a connected component in the forest GA =
(V, A)

• (u, v) is a light edge connecting C to some other
component in GA

– i.e.,(u,v) is a light edge crossing the cut (VC,V−VC)

• Then, edge (u, v) is safe for A.

• Proof: Set S = VC in the theorem.

– This naturally leads to the Kruskal’s algorithm

16

Kruskal’s algorithm

• Starts with each vertex being its own
component

• Repeatedly merges two components into one
by choosing the light edge that connects them

• Scans the set of edges in monotonically
increasing order by weight

• Uses a disjoint-set data structure to determine
whether an edge connects vertices in different
components.

11/10/2015 17

Disjoint Sets Data Structure

• A disjoint-set is a collection C ={S1, S2,…, Sk} of
distinct dynamic sets

• Each set is identified by a member of the set, called
representative.

• Disjoint set operations:

– MAKE-SET(x): create a new set with only x
• assume x is not already in some other set.

– UNION(x,y): combine the two sets containing x and y into
one new set.
• A new representative is selected.

– FIND-SET(x): return the representative of the set
containing x.

11/10/2015 18

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
19

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
20

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
21

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v) // same tree?

A = A U {{u,v}};

Union(u, v);

}

Kruskal’s Algorithm

2 19

9

1?

5

13

17
25

14
8

21

Run the algorithm:

22

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
23

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}

Kruskal’s Algorithm

2? 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

24

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
25

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}

Kruskal’s Algorithm

2 19

9

1

5?

13

17
25

14
8

21

Run the algorithm:

26

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
27

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8?

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
28

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
29

Kruskal’s Algorithm

2 19

9?

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
30

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
31

Kruskal’s Algorithm

2 19

9

1

5

13?

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
32

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
33

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14?
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
34

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
35

Kruskal’s Algorithm

2 19

9

1

5

13

17?
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
36

Kruskal’s Algorithm

2 19?

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
37

Kruskal’s Algorithm

2 19

9

1

5

13

17
25

14
8

21?

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
38

Kruskal’s Algorithm

2 19

9

1

5

13

17
25?

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
39

Kruskal’s Algorithm: Done

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}
40

Correctness Of Kruskal’s Algorithm

• Sketch of a proof: this algorithm produces an MST of
T

– Assume algorithm is wrong: result is not an MST

– Then, algorithm adds a wrong edge at some point

– If it adds a wrong edge, there must be another lower
weight edge

– But algorithm chooses lowest weight edge at each step.
Contradiction

41

Kruskal(G, w)

{

A = ;

for each v  G.V

Make-Set(v);

sort G.E by non-decreasing order by weight w

for each (u,v)  G.E (in sorted order)

if FindSet(u)  FindSet(v)

A = A U {{u,v}};

Union(u, v);

}

Kruskal’s Algorithm

What will affect the running time?

Initialize A O(1)

1st FOR loop |V| MakeSet() calls

Sort O(E lgE)

FINDSET()/Union() O(E) calls

42

Kruskal’s Algorithm: Running Time

• Initialize A: O(1)

• First for loop: |V| MAKE-SETs

• Sort E: O(E lg E)

• Second for loop: O(E) FIND-SETs and UNIONs

• O(V) +O (E α(V)) + O(E lg E)
– Since G is connected, |E| ≥ |V|−1⇒ O(E α(V)) + O(E lg E)

– α(|V|) = O(lg V) = O(lg E)

– Therefore, the total time is O(E lg E)

– |E| ≤ |V|2 ⇒ lg |E| = O(2 lg V) = O(lg V)

– Therefore, O(E lg V) time
43

Prim’s algorithm
• Build a tree A

– Starts from an arbitrary “root” r.

– At each step, find a light edge crossing the cut (VA, V −
VA), where VA = vertices that A is incident on.

– Add this light edge to A.

• GREEDY CHOICE:
add min weight to A

44

How to find the light edge quickly?

• Use a priority queue Q

– Each object is a vertex in V−VA

– Key of v is the minimum weight of any edge (u, v),
where u ∈ VA

– the vertex returned by EXTRACT-MIN is v

• such that there exists u ∈ VA, and edge (u, v) is a light
edge crossing (VA, V−VA)

• Key of v is ∞, if v is not adjacent to any vertices in
VA

45

How to find the light edge quickly?

• The edges of A form a rooted tree with root r

– r is given as an input to the algorithm, but it can be any
vertex

– Each vertex knows its parent in the tree by the attribute
v.π = parent of v

– π[v] = NIL, if v = r or v has no parent.

– As the algorithm progresses, A= {(v, v.π) :v ∈V − {r} − Q }

46

Prim’s Algorithm

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

47

Prim’s Algorithm

14
10

3

6 4
5

2

9

15

8

Run on example graph

48

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

  

  





14
10

3

6 4
5

2

9

15

8

Run on example graph

49

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

  

0  





14
10

3

6 4
5

2

9

15

8

Pick a start vertex r

r

50

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

  

0  





14
10

3

6 4
5

2

9

15

8

Red vertices have been removed from Q

u

51

Prim’s Algorithm

  

6 4
5 9

52

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

0  

3

14
10

3

2
15

8

Red arrows indicate parent pointers

u

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

14  

0  

3



14
10

3

6 4
5

2

9

15

8

u

53

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

14  

0  

3



14
10

3

6 4
5

2

9

15

8
u

54

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

14  

0 8 

3



14
10

3

6 4
5

2

9

15

8
u

55

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

10  

0 8 

3



14
10

3

6 4
5

2

9

15

8
u

56

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

10  

0 8 

3



14
10

3

6 4
5

2

9

15

8
u

57

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

10 2 

0 8 

3



14
10

3

6 4
5

2

9

15

8
u

58

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

10 2 

0 8 15

3



14
10

3

6 4
5

2

9

15

8
u

59

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

10 2 

0 8 15

3



14
10

3

6 4
5

2

9

15

8

u

60

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

10 2 9

0 8 15

3



14
10

3

6 4
5

2

9

15

8

u

61

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

10 2 9

0 8 15

3

4

14
10

3

6 4
5

2

9

15

8

u

62

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

5 2 9

0 8 15

3

4

14
10

3

6 4
5

2

9

15

8

u

63

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

5 2 9

0 8 15

3

4

14
10

3

6 4
5

2

9

15

8

u

64

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

5 2 9

0 8 15

3

4

14
10

3

6 4
5

2

9

15

8

u

65

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

5 2 9

0 8 15

3

4

14
10

3

6 4
5

2

9

15

8

u

66

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Prim’s Algorithm

5 2 9

0 8 15

3

4

14
10

3

6 4
5

2

9

15

8

u

67

Review: Prim’s Algorithm

What is the hidden cost in this code?

68

MST-Prim(G, w, r)

for each u  G.V

u.key = 

u. = NIL

r.key = 0

Q = G.V

while (Q not empty)

u = ExtractMin(Q)

for each v  G.Adj[u]

if (v  Q and w(u,v) < v.key)

v. = u

v.key = w(u,v)

Review: Prim’s Algorithm

MST-Prim(G, w, r)

Q = V[G];

for each u  Q

key[u] = ;

key[r] = 0;

p[r] = NULL;

while (Q not empty)

u = ExtractMin(Q);

for each v  Adj[u]

if (v  Q and w(u,v) < key[v])

p[v] = u;

DecreaseKey(v, w(u,v));

69

Prim’s Algorithm: running time

• We can use the BUILD-MIN-HEAP procedure
to perform the initialization in lines 1–5 in
O(V) time

• EXTRACT-MIN operation is called |V| times,
and each call takes O(lg V) time, the total time
for all calls to EXTRACT-MIN is O(V lg V)

11/10/2015 70

Running time (cont’d)

• The for loop in lines 8–11 is executed O(E)
times altogether, since the sum of the lengths
of all adjacency lists is 2 |E|.

– Lines 9 -10 take constant time

– line 11 involves an implicit DECREASE-KEY
operation on the min-heap, which takes O(lg V)
time

• Thus, the total time for Prim's algorithm is
O(V) +O(V lg V) + O(E lg V) = O(E lg V)

– The same as Kruskal's algorithm
11/10/2015 71

Summary

• We learned

– Generic MST

– Kruskal’s and Prim’s algorithm

• Common mistakes: Don’t mix Kruskal’s
algorithm with Prim’s algorithm

72

